
CHAPTER

FIVE

MODELS, LANGUAGES, AND HEURISTICS

The next three parts form the heart of this book. In these parts we discuss

models, languages, and heuristics for coordinated computing. This chapter lays

the groundwork for understanding the various systems, pointing out the crit-

ical choices involved in system design. We describe the models in Part 2, the

languages in Part 3, and the heuristic systems in Part 4. In Part 5, we summa-

rize our observations, comparing and contrasting the approaches taken by the

di�erent systems.

This chapter has three sections. We begin by discussing the di�erences be-

tween programming languages, models of programming systems, and heuristic

organizations for programming. Models are used to understand and describe

computation, while languages are used to command computers. Often a proposed

system has some characteristics of each. Heuristics are organizational frameworks

for controlling distributed systems.

Coordinated computing is a �eld of our invention. The authors of the various

proposals wrote papers on subjects such as programming languages, the mathe-

matical theory of computation, and arti�cial intelligence, not expecting to have

these papers packaged together with such distant conceptual cousins. In fact, the

systems are very di�erent. This divergence arises primarily because the various

proposals address di�erent problem domains. Di�erent domains have di�erent

key problems and assumptions; the given of one �eld is often the critical issue

of another. In Section 5-2 we discuss the problem domain \soil" in which these

proposals grew, listing the assumptions and issues of each intellectual region.

44



models, languages, and heuristics 45

Designing a programming system involves making many decisions. Some of

these decisions are uninteresting: Should the assignment symbol be \=" or \:="?

We ignore such issues. On the other hand, some decisions are more important:

Should assignment be allowed at all? We have identi�ed 12 crucial dimensions

for the language/model designer. We introduce these design dimensions in Sec-

tions 5-2 and 5-3. Each of the systems in Parts 2, 3, and 4 chooses one or

more of the possibilities for each dimension; the reader should be able to rec-

ognize the choices. These decisions determine a large part of the structure of

a language or model. In Part 5 we compare the choices used by the various

systems. Their variety can then be understood to be a selection in the space

of critical choices.

5-1 MODELS, LANGUAGES, AND HEURISTICS

Models are used to explain and analyze the behavior of complex systems. A model

abstracts the salient properties of a system. Models of concurrent systems usually

specify the interprocess communication and synchronization mechanisms. The

model is then used to derive properties and predict the behavior of the system.

For example, a model of the communication patterns of a set of processes can

be used to analyze algorithmic e�ciency; a model of the information transfer

between processes can be used to prove algorithmic correctness.

Programming languages are used to provide exact directions to computers.

In Chapter 2 we observed that programming languages are characterized by their

syntax and semantics. The syntax describes the surface appearance of a language,

while the semantics is the set of actions that can be e�ected. The key issue in

programming language design is not syntax but semantics. The semantics of a

programming language reveals the choice of ontology (set of things that exist)

and the set of things that can be done with them|in some sense, computational

metaphysics.

The formal semantics of concurrent languages is a complicated subject. Con-

current languages are almost always more powerful than Turing machines. This is

because Turing machines are deterministic|they always produce the same out-

put for the same input. Concurrent systems can take advantage of asynchronous

processes to produce many di�erent answers for the same input. Similarly, there

are di�erences in operational semantic power among the concurrent languages.

Some systems provide primitives for synchronization and timing that are di�-

cult or impossible to imitate as nonprimitives. Except for the presence of such

primitives, usually (but not always) the behavior exhibited by one system can

be obtained by the other systems. However (like conventional languages), the

equivalent of a short program in one language may be a long program in an-

other. In Section 19-3, we discuss a model that can describe the behavior of all

the systems in Parts 2, 3, and 4.



46 foundations

Some of our systems are model-language hybrids. A hybrid has some lan-

guagelike features (typically the critical ones for distributed computing) often

with a minimal syntax. The language/model designer then glosses over the re-

mainder of the proposed language, asserting that it is a standard sort of system.

The archetypical hybrid adds a few programming constructs to any of a class

of languages. This is a good way to express new programming concepts. The

syntax and semantics of ordinary programming languages are well understood.

By concentrating only on the extensions for distribution, hybrid designers focus

on the critical issues.

Heuristic systems are proposed organizations for distributed problem solving.

Megacomputing presents both a challenge and an opportunity to programming.

On one hand, large distributed systems will provide almost unlimited processing.

On the other hand, it may be di�cult to organize such a system to actually

get anything useful done. Heuristic organizations are often based on taking a

particular algorithm or metaphor and projecting it into a system organization. A

simple example is taking the idea of committing or terminating a group of actions

simultaneously, allowing a programmer to be sure of a distributed consistency.

A more grandiose heuristic organization would be a programming system built

around the theme: \the agents of a distributed system are individuals in a laissez

faire economy, buying and selling goods and services to reach their individual

goals." Such a system would provide agents, goods (perhaps computing cycles

and memory allocations), services (the solutions of subtasks), and currency and

a market to structure their interactions. A programmer who can express a task

in terms of these objects would �nd that task easily programmed in such a

megacomputing system.

5-2 PROBLEM DOMAINS

The systems we consider in the next three parts are a diverse group. One might

be curious about the origin of their variety. Some of this variety arises from

the natural inclination of people to �nd di�erent ways of doing the same thing.

However, most of the di�erences have a more fundamental source|the plethora

of di�erent mechanisms arises from a plethora of di�erent problem domains.

That is, the designers of these systems are building tools to solve di�erent classes

of problems. Thus, each invents a di�erent set of tools. We have included this

variety of systems because we believe that these problem domains and solutions

are relevant to coordinated computing.

Problem Domain The system designers have their own perspective on the

problems of distributed computing and have designed their systems to address

just those issues. We identify �ve major perspectives in these proposals: oper-

ating systems, pragmatics, semantics, analysis, and distributed problem solving.



models, languages, and heuristics 47

Each system focuses on some combination of these. Often a construct that is

meant to solve the problems of one domain implies a set of unacceptable assump-

tions for another. For example, an elaborate algorithm for choosing processes to

communicate is inappropriate for a system directed at implementing underlying

communication mechanisms. On the other hand, a system that provides no com-

munication control may be too primitive for describing complex problem-solving

architectures.

Some languages address the immediate control of the distributed system. We

call this the operating systems approach. Such systems emphasize matching the

constructs of the distributed language to the physical machines. Key issues in the

operating systems approach are the ease of e�ecting this control and the e�ciency

of the resulting system. Operating systems approaches sometimes treat processes

and processors as synonymous. In such systems communication structure|which

processes can communicate with which other processes|often remains static

throughout program execution. We frequently use the synchronization problems

discussed in Chapter 3 to illustrate operating systems languages.

The pragmatic approach is concerned with providing tools to aid the pro-

gramming process. Pragmatic systems emphasize ease of program expression.

Pragmatic languages often include constructs that are not necessarily easy to

implement but that the designers feel are important for structuring or aiding

programming. Typical examples for pragmatic systems are di�cult algorithms

simpli�ed by the special constructs of the language.

Some researchers study concurrent computing systems as mathematical ob-

jects, hoping to clarify the semantics of concurrent computation and to prove

the correctness of programs. We call this perspective the semantic approach to

coordinated computing. From this perspective, the key metric for appraising a

proposal is mathematical elegance. (Of course, a connection to practice provides

a sound basis for theoretical work. Thus, the generality of the selected model

and its correspondence to elements of real systems are also important.) The pro-

poser of a semantic model displays its virtues with proofs. However, such proofs

are beyond our present scope; we remain aware of mathematical grace without

directly experiencing it.

Models developed from the analytic perspective are concerned with analyzing

algorithmic e�ciency. The ease of performing that analysis is an important cri-

terion for success of such systems. Like semantic models, analytic models require

a close correspondence between the model and the system being modeled.

Some systems are heuristic organizations for problem solving. These systems

seek to harness concurrent computing systems to work together on di�cult sym-

bolic tasks. The natural expression of problems and problem domains and the

translation of this expression into e�cient distributed programs are the goals of

heuristic approaches.

Often a proposal addresses several of these problem areas simultaneously.

For example, a pragmatic approach might assert that program veri�cation is an



48 foundations

important tool; programs in \good" languages must be easy to prove correct.

Similarly, languages for building real systems should have at least a peripheral

concern for programming pragmatics.

5-3 PRIMITIVES FOR DISTRIBUTED COMPUTING

Our survey of systems reveals several common themes. We have already examined

one such theme, the problem-domain perspective. In this section, we indicate

several other key choices for designers of coordinated systems. The description

of each system (in Parts 2, 3, and 4) shows how it approaches each dimension.

Explicit Processes The primary characteristic of a coordinated computing sys-

tem is the simultaneous activity of many computing agents. The �rst decision

for the designer of a coordinated model or language is whether to make the

user (programmer) aware of the existence of these agents or to conceal the sys-

tems's underlying parallel nature. Systems that provide such agents to the user

level have explicit processes. Typically, processes have program and storage. Of-

ten, processes have names (or addresses). Every system with explicit processes

provides some mechanisms for interprocess communication; some explicit process

systems treat processes as allocatable objects that can be created (and destroyed)

during program execution.

Alternatively, a system can be organized around implicit processes. With im-

plicit processes, computation is performed on request. The user does not specify

\who" is to satisfy the request. The theme of these systems is that the user de-

�nes what is to be done and the system arranges for its concurrent computation.

In general, a part of a system that can accomplish computation is an agent.

Processes are examples of agents.

Almost all the systems in Parts 2, 3, and 4 use explicit processes. Many of

the remaining dimensions of coordinated language and model design deal with

interprocess communication and control. Often these issues must be interpreted

di�erently for implicit-process systems.

Process Dynamics In a system with explicit processes, the set of processes

can be �xed for the lifetime of the program or the system can allow processes

to be created and destroyed during program execution. We say that a system

that allows the creation of new processes during program execution supports

dynamic process creation. A system that treats the set of processes as �xed has

static process allocation.

Systems with dynamic process creation usually create processes in one of two

ways|either by explicitly allocating new processes in an executable statement

(comparable to the new statement for storage allocation in Pascal), or by the

lexical expansion of program text. That is, if process P declares (as one of its



models, languages, and heuristics 49

variables, so to speak) process Q, then creating a new copy of P lexically creates

a new copy of Q.

Many systems give names to newly created processes. These names can be

passed between processes; communications can be addressed to processes by their

names. Systems with static processes sometimes require that the system be able

to determine the interprocess communication structure (\who talks to whom")

before program execution (\at compile time").

Systems that allow dynamic process creation usually provide dynamic proc-

ess destruction. A process that has �nished executing has terminated. Proc-

esses can terminate in several di�erent ways. Almost all systems allow processes

to terminate by completing their program. Some systems have more elaborate

schemes for process termination, including mechanisms that allow some processes

to terminate other processes. One alternative to explicit termination is garbage

collection of the resources of inaccessible or useless processes.

Synchronization Those systems that do not have explicit processes commu-

nicate through shared storage. Some systems with explicit processes also allow

shared storage for interprocess communication. Communication without shared

storage is message communication.

The two kinds of message transmissions are synchronous and asynchronous

messages. The sender of an asynchronously transmitted message initiates the

message and is then free to continue computing. These are send-and-forget com-

munications. With synchronously transmitted messages, the communicating par-

ties both attend to the communication. A process that starts a synchronous

transmission waits until the message has been both received and acknowledged.

We say that a process that is waiting for a synchronous communication to be

accepted is blocked.

Synchronous communication resembles a procedure call since the caller

transfers control and waits until the called agent returns an acknowledgment.*

Asynchronous communication is uncommon in conventional programming lan-

guages. Metaphorically, synchronous communication can be compared to a tele-

phone call|it requires the attention of both communicators and allows two-way

conversations. Asynchronous communication is like mailing a letter|one is not

idle until a dispatched letter is delivered, but there is no direct mechanism for

achieving an immediate response. Communications are generally requests. A re-

quest is an attempt by one agent in a computing system to elicit a particular

behavior from another.

Whether synchronous or asynchronous communications provide a better

structure is a longstanding issue among operating systems designers. In a contro-

versial paper, Lauer and Needham [Lauer 78] argue that (at least for operating

* The term remote procedure call has been used to describe the concept of calling a proce-

dure on another machine. Nelson's dissertation [Nelson 81] examines this concept in detail.



50 foundations

systems on conventional uniprocessors) synchronous and asynchronous commu-

nication primitives are duals: there is a direct transformation from a system de-

signed around one to a system designed around the other. Whether this duality

extends to coordinated computing systems remains an open question.

Bu�ering One dimension of interprocess communication is the number of mes-

sages that can be pending at any time. In synchronous communication, each

process has only a �nite number of pending messages. Such systems have bounded

bu�ers. In asynchronous communication, the system can allow an unlimited num-

ber of messages (unbounded bu�ers), provide a �nite bu�er that can be over-

written (shared storage), or halt a process that has created too many unresolved

requests. These last two are also examples of systems with bounded bu�ers.

Information Flow The content of a message is its information. When proc-

esses communicate, information \ows" between them. This information can

either ow from one process to the other (unidirectional information ow) or

each process may transmit information to the other (bidirectional information

ow). Bidirectional ow can be either simultaneous or delayed. With simultane-

ous ow, processes receive each other's communication at the same time. With

delayed ow, �rst one process transfers information to the other, the recipient

processes the request, and then sends an answer back to the original requester.*

The classical procedure call is thus an example of bidirectional, delayed infor-

mation ow. Systems with asynchronous communication invariably have only

unidirectional information ow, as the sending process does not automatically

receive a response.

We can imagine more complicated schemes, where information is transferred

back and forth several times in a single communication. (This idea parallels

virtual circuits in communications networks.) However, none of the systems we

discuss support such a mechanism. One reason for this is that multiple exchanges

can be imitated by repeated single exchanges.

Communication Control The dimension that has the largest variety of mech-

anisms is communication control | the rules for establishing communication.

Most systems are concerned with focused communication|communications di-

rected at particular recipient processes or \mailboxes." Some of these systems

treat communicators symmetrically|each performs the same actions to achieve

communication. However, most systems are asymmetric. These systems prescribe

* Our de�nitions of unidirectional and bidirectional information ow parallel similar con-

cepts in the design of communication networks: a simplex connection transfers data in only

one direction; a half-duplex connection, in both directions but not simultaneously (a version

of our bidirectional delayed); and a full-duplex connection, in both directions simultaneously

(similar to our bidirectional simultaneous).



models, languages, and heuristics 51

a caller -callee relationship between communicators. In such an organization, one

process makes a request to another. The called process can be passive, accepting

all calls unconditionally, or it can be active, choosing between classes of requests.

This selection takes many forms, which include named queues, guarded com-

mands, pattern matching, time-outs, �lters, and searches. Occasionally a system

provides some of these mechanisms to the calling task.

Several heuristic systems use a pattern-invoking, broadcast form of com-

munication. Here, the system conveys messages to their appropriate recipients,

based on the contents of the messages and the interests of the recipients.

Communication Connection Communication can either be organized around

a name external to the communicating processes (a port), a name associated

with a particular process, or as a broadcast to interested tasks. Ports are most

common in symmetric organizations. In asymmetric systems, communication

is usually associated with either the called process as a whole (a name) or a

particular label within the called process (an entry). In some heuristic systems,

processes broadcast information. Recipients describe their interests by patterns

and the system forwards appropriate messages to them.

Time A process that initiates communication may have to wait for its corre-

spondent process. Such a process is blocked. Systems have various mechanisms

for escaping this blocking. A few systems provide a mechanism for timing-out

a blocked communication, permitting the process to register that the commu-

nication attempt failed. The most powerful such time-out mechanisms allow the

programmer to specify an amount of time before the failure; weaker mechanisms

provide only instantaneous time-out, where a process can check only if commu-

nication is immediately available. Although many models and languages do not

support any time-based constructs, such constructs are vital for actual system

implementations.

Fairness Intuitively, a fair system is one that gives each agent its rightful turn.

Fairness is prominent in two places in coordinated computing|the fair allocation

of computing resources and the fair allocation of communication opportunities

among processes.

Formalizing the notion fairness is di�cult. Oversimplifying, we say that there

are three varieties of fairness: antifairness, weak fairness and strong fairness. An

antifair system makes no commitments about the level of any process's service.

In an antifair system, a process can make a request and be ignored for the

remainder of the computation. In a weakly fair system, each process eventually

gets its turn, although there is no limit on how long it might have to wait before

being served. In a strongly fair system, processes with equivalent priorities should

be served in the order of their requests. However, in a distributed system it

is often di�cult to establish the ordering of several concurrent events. Strong

fairness is usually implemented by keeping an explicit queue of waiting requests.



52 foundations

Of course, all fairness criteria are modi�ed by a model or language's explicit

priority structure. If process A has higher priority than process B, then A may

receive service arbitrarily more frequently than B in what is nevertheless a fair

system.

The most common way to implement strong fairness is with queues. Fre-

quently, every process entry in a strongly fair system has an associated queue.

Processes accept requests on these entries in the queue order.

Failure One key issue of distributed computing is coping with failure. Several of

the languages and models have features directed at dealing with particular kinds

of failures. These mechanisms vary from language to language; they include time-

outs, exception handlers, redundancy, atomic actions, and functional accuracy.

Time-outs specify that a lack of response within a speci�c time period is to

be treated as the failure of the correspondent process. In that case, a speci�ed

alternative action is to be executed. Exception handlers generalize this idea to

other classes of failures, attaching programs to each variety of failure that the

system can detect. Redundancy provides mechanisms for repeatedly attempting

a fragile action in the hope that it will occasionally succeed. Atomic actions

are a linguistic mechanism for encapsulating a group of more primitive actions,

asserting that all are to fail if any fails. Functional accuracy embeds su�cient

redundancy in the processes, programs, and data of a problem that even errorful

intermediate results do not alter the system's overall performance.

Heuristic Mechanisms Several systems include heuristic mechanisms to aid in

distributed control. These include atomic actions, pattern-directed invocation,

and negotiation-based control. Part 4 discusses systems that focus on heuristic

control issues.

Pragmatics Many of the proposals (particularly the languages) are intended

as real programming tools. As such, they include features to ease the task of

programming. These features include strong typing, symbolic tokens, and data

abstraction. These constructs do not change the semantics of the underlying sys-

tems|whatever can be programmed with such aids can be programmed without

them. However, there is considerable feeling in the programming language com-

munity that such features are essential to the design and construction of viable

programming systems. When appropriate, we describe the pragmatic aspects of

systems.

PROBLEMS

5-1 What other task domains could use a coordinated computing model or language?

5-2 Analyze a natural (human) organization, such as a company, school, or government, for

the interactions described by our dimensions.



models, languages, and heuristics 53

REFERENCES

[Lauer 78] Lauer, H. C., and R. M. Needham, \On the Duality of Operating Systems Struc-

tures," Proc. 2d Int. Symp. Oper. Syst., IRIA (October 1978). Reprinted in Operating

Systems Review, vol. 13, no. 2 (April 1979), pp. 3{19. This paper divides operating sys-

tems into two classes, those with a set of independent processes that communicate by

messages and those with a set of processes that communicate with procedure calls and

shared data. The paper asserts that a system organized by either method has an equivalent

dual organized the other way. Furthermore, the dual is as e�cient as the original.

[Nelson 81] Nelson, B. J., \Remote Procedure Call," Ph.D. dissertation, Carnegie-Mellon

University, Pittsburgh (1981). Reprinted as Technical Report CSL-81-9, Xerox Palo Alto

Research Center, Palo Alto, California. Nelson argues that remote procedure call is an

appropriate basis for organizing distributed systems.


